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Abstract

We have performed three-dimensional linear stability analyses for natural convection in an inclined square duct. The duct is heated
from the bottom, while the lateral walls are assumed to be perfectly thermal conducting. Three-dimensional transverse rolls whose axes
are normal to the axis of the duct occur from the motionless state when the Rayleigh number exceeds a critical value and the duct is
placed horizontally (h = 0�). However, it is found that when the duct is placed inclined (h = 0.01�), a two-dimensional longitudinal roll
which is unchanged in the axis of the duct occurs and is stable if the Rayleigh number is small.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in a long horizontal duct heated
from the bottom appears in many practical and industrial
devices such as heat exchangers, air conditioners and cer-
tain type of processing devices being used in various chem-
ical plants. Fluid contained in the duct is in a motionless
state if the duct is placed horizontally when the Rayleigh
number is relatively small. Roll type natural convection
occurs as a pitchfork bifurcation from the motionless state
due to instability when the Rayleigh number exceeds a crit-
ical value. There are two kinds of the roll type convection
to occur in the duct. One is longitudinal roll, referred to as
L-roll hereafter, whose axis is parallel to that of the duct.
The other is transverse roll, referred to as T-roll hereafter,
whose axis is normal to that of the duct. It should be noted
that the L-roll is two-dimensional flow unchanged in the
axis of the duct, while the T-roll is three-dimensional one
and periodic in the axis of the duct.
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Davis [1] has examined the linear stability of the conduc-
tion state in a three-dimensional enclosure. He assumed a
quasi-two-dimensional disturbance with two non-zero
velocities depending on all spatial variables, and concluded
that the T-rolls were predicted as a preferred mode of the
convection in a rectangular enclosure like a duct. Later
on, however, Davies-Jones [2] has pointed out that the
quasi-two-dimensional disturbance did not exactly satisfy
the linearized disturbance equations. Despite of such find-
ings by Davies-Jones, the quasi-two-dimensional distur-
bance gives a close approximation of the preferred modes
in some cases. Therefore, the T-roll convection occurs from
the motionless state in the duct placed horizontally and
heated from the bottom, and the resultant flow field is
three-dimensional.

On the other hand, the L-roll convection appears in the
duct under the assumption of two-dimensional flow fields.
Critical conditions for onset of the L-roll convection from
the motionless state have been evaluated for both insulat-
ing and conducting side walls by some researchers [3–6].
They calculated the critical Rayleigh numbers against
the aspect ratio of the cross-section of the duct. In addi-
tion to the evaluation of the critical conditions, Adachi
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Nomenclature

g* gravitational acceleration
h* height and width of the duct
hm Lagrange interpolants through Gauss–Legendre–

Lobatto points
~hm Lagrange interpolants through Gauss–Legendre

points
K number of spectral element
N truncation parameter of expansions
p pressure
Pr Prandtl number, Pr = m*/j*

Ra Rayleigh number, Ra = b*g*h*3DT*/j*m*

t time
T temperature
T �0 reference temperature
(u,v,w) velocity components

(x,y,z) rectangular co-ordinates
a wave number in the x-direction
b* thermal expansion coefficient
DT* temperature difference between the lower and

upper surfaces
j* thermal diffusivity
m* kinematic viscosity
k wave length k = 2p/a
q* density
h angle of inclination
x = xr + ixi eigenvalue of the eigenvalue problem

Superscripts

c critical

* dimensional value

T. Adachi / International Journal of Heat and Mass Transfer 49 (2006) 2372–2380 2373
and Mizushima [9] have calculated the nonlinear steady
solutions of L-roll after the bifurcation and investigated
the secondary instability of the steady solutions. In the
above analyses, the flow and temperature fields have
been treated to be two-dimensional and unchanged in
the axis of the duct. However, since a possible mechanism
guaranteeing the two-dimensionality did not proposed,
the results should be accepted as those of a mathematical
model.

It is quite common that the duct is installed in an
industrial devices inclined at certain degrees because of
its accuracy limitation. Then, the natural convection
always occurs even if the Rayleigh number is small
enough. That is to say, there is no motionless state. The
convection in the duct is the two-dimensional L-roll,
because the balance between gravity and buoyancy force
breaks uniformly along the axis of the duct. Therefore,
the two-dimensionality seems to be valid in this case.
The effect of an inclination of the duct has been consid-
ered by Cliffe and Winters [8]. They assumed that the side
walls were insulated. It was shown that the pitchfork
bifurcation became imperfect one. On the other hand,
Mizushima and Adachi [9] have studied the effect of incli-
nation on the bifurcation by weakly nonlinear stability
theory. They derived an amplitude equation from a
growth rate expansion method and explained the change
of structures of the bifurcation. Furthermore, Ozoe
et al. [10] have experimentally investigated a natural con-
vection in an inclined square duct. They showed that the
flow was the L-roll as the degree of inclination was
greater than 10� from the horizontal, while multiple stable
states were possible as the degree of inclination decreased
below 10� from the horizontal, and a series of T-roll con-
vection was eventually attained as the stable mode as the
inclination approaches zero. Therefore, the flow fields
changed between the L-roll and T-roll depending on the
angle of inclination of the duct, but it is not apparent
which convection between the L-roll and T-roll occurs if
the duct is placed at an small angle of inclination.

In this paper, we investigate the stability of the natural
convection in an inclined square duct. The duct is heated
from the bottom and has perfectly conducting side walls.
In order to clarify the preferred roll type for the case that
the duct is placed at an small angle, we treat 0� and 0.01�
as inclination angles. First, we calculate a nonlinear
steady-state solution of the two-dimensional L-roll con-
vection. Then, the three-dimensional linear stability the-
ory is applied to the two-dimensional L-roll solution by
using a spectral element method. The generalized eigen-
value problem of matrix form is constituted based on
the linear stability theory. We evaluate the critical Ray-
leigh number where the L-roll and motionless state
lose their stabilities to the three-dimensional distur-
bances, and also clarify the hydrodynamic nature of insta-
bility.

2. Mathematical formulation

2.1. Basic equations

Consider a fluid contained in an inclined square duct
with each side-length h* as shown in Fig. 1. Fig. 1(a) shows
a part of infinitely long duct and Fig. 1(b) shows a cross-
section of the duct. The x*-axis is taken along one of the
duct, the y*-axis taken parallel to the bottom side and the
z*-axis taken perpendicular to the y*-axis with origin O.
The upper surface of the duct is isothermally cooled to
keep the temperature T �0 � DT �=2, while the lower one
isothermally heated to keep T �0 þ DT �=2, where T �0 is a
reference temperature at y* = 0 and its value is constant.
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Fig. 1. Geometry and co-ordinates. The duct is placed at an angle h of
inclination. (a) A part of infinitely long duct. (b) Cross-section of the duct
with 4 spectral element numbers.
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We define non-dimensional quantities as follows

x ¼ x�

h�
; y ¼ y�

h�
; z ¼ z�

h�
;

t ¼ t�

ðh�2=j�Þ
; u ¼ u�

ðj�=h�Þ ;

v ¼ v�

ðj�=h�Þ ; w ¼ w�

ðj�=h�Þ ;

p ¼ p�

ðq�j�2=h�2Þ
; T ¼ ðT

� � T �0Þ
DT �

;

ð1Þ

where j* and q* are the coefficient of thermal diffusivity
and density of the fluid, respectively. We represent physical
quantities with their dimensions by attaching a superscript

* to them.
We assume that the flow is incompressible and the Bous-

sinesq approximation is valid, where the approximation is
applicable for sufficiently small temperature difference
between the upper and lower surfaces. Then, the velocity
(u,v,w), pressure p and temperature T are governed by
the continuity, Navier–Stokes and energy equations as
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where Ra and Pr are the Rayleigh number and the Prandtl
number, respectively, which are defined as

Ra ¼ b�g�h�3DT �

j�m�
; Pr ¼ m�

j�
ð7Þ

where b*, m* and g* are the coefficients of thermal expan-
sion, kinematic viscosity of the fluid and gravitational
acceleration. The value of the Prandtl number is fixed as
Pr = 7 throughout this paper.

We assume that all boundaries are rigid, therefore the
velocity is zero on the wall. In addition to the velocity,
the upper surface of the duct is isothermally cooled, while
the lower one isothermally heated. For the lateral walls, we
consider a thermally conducting state. Then the boundary
conditions are written as

u ¼ v ¼ w ¼ 0; T ¼ 1

2
; at y ¼ � 1

2
; ð8Þ

u ¼ v ¼ w ¼ 0; T ¼ � 1

2
; at y ¼ 1

2
; ð9Þ

u ¼ v ¼ w ¼ 0; T ¼ �y; at z ¼ � 1

2
. ð10Þ
2.2. Steady-state equations for longitudinal roll

We calculate a nonlinear steady-state solution to study
its linear stability. Now we focus ourselves on the L-roll
convection unchanged in the axial x-direction of the duct
which includes the motionless state. The nonlinear
steady-state solution is expressed as (V ðy; zÞ, W ðy; zÞ,
T ðy; zÞ, P ðy; zÞ). Substituting the expressions into Eqs.
(2)–(6) and dropping the terms including the operator
o/ot, we obtain the following two-dimensional steady-state
equations as
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The boundary conditions for (V ðy; zÞ, W ðy; zÞ, T ðy; zÞ) are
the same as Eqs. (8)–(10).

2.3. Linear disturbance equations

All the steady-state solutions obtained from Eqs. (11)–
(14) are not stable. We investigate the linear stability of
the steady solutions by adding disturbances to them and
by observing the time dependence for the disturbances.
Then, the velocity, temperature and pressure are expressed
as the sum of the steady solution (V , W , T , P ) and the dis-
turbance defined as
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where a is a wave number and x is a complex frequency.
The real part xr and the imaginary part xi denote the fre-
quency and the linear growth rate of the disturbance,
respectively. The steady solution is unstable if xi > 0 and
the disturbance grows with time. The disturbance with
a = 0 forms the two-dimensional flow field, while one with
a 5 0 forms the three-dimensional one.

Substituting Eq. (15) into Eqs. (2)–(6), then subtracting
the steady-state equations from the resultant equations and
dropping the nonlinear terms of the disturbance, we obtain
the following linearized equations for the disturbance as
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The boundary conditions for (ð~uðy; zÞ, ~vðy; zÞ, ~wðy; zÞÞ)

are the same as Eqs. (8)–(10). On the other hand, the
boundary condition for eT ðy; zÞ is written as

eT ¼ 0 at y ¼ � 1

2
and z ¼ � 1

2
. ð21Þ
3. Numerical method

The numerical calculations are carried out by utilizing a
spectral element method [11,12]. The spectral element
method has both the generality of the finite element
method and the accuracy of the classical spectral method.

In the spectral element method, the actual calculation
domain is broken up into K elements. Here we break the
domain into 4 elements such as (1) 0 6 y 6 0.5,
�0.5 6 z 6 0, (2) �0.5 6 y 6 0, �0.5 6 z 6 0, (3) 0 6 y 6

0.5, 0 6 z 6 0.5 and (4) �0.5 6 y 6 0, 0 6 z 6 0.5 as shown
in Fig. 1(b). Each element is mapped from the physical
(y,z) space to the local ð�y;�zÞ coordinate system whose
ranges are [�1,1]. For example, the coordinate transforma-
tion from y being of the length Lk and defined on the inter-
val [ak,bk] in the kth element to �y is carried out by the
following equation as

�y ¼ 2

Lk ðy � akÞ � 1. ð22Þ

The velocity, temperature and pressure are expanded by
high-order Lagrangian interpolants as
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where hm is the Nth order Lagrange interpolants through
(N + 1) Gauss–Legendre–Lobatto points in the kth ele-
ment and ~hm is the (N � 2)th order interpolants through
(N � 1) Gauss–Legendre points in the kth element.

Substituting the expansions of Eqs. (23) and (24) into
the weak forms of both the steady-state and disturbance
equations and also using the Galerkin method, we obtain
a set of algebraic equations for the coefficients of the
expansions. We use a mapping array method [12] to con-
struct the system matrix from the element matrices. The
set of algebraic equations for the steady solution are solved
numerically by the Newton–Raphson method. On the
other hand, the set of algebraic equations for the stability
of the steady solution constitutes a generalized eigenvalue
problem in a matrix form as

Aa ¼ xBa ð25Þ
where a is a vector of expansion coefficients, and A and B

are the matrices arising from the right-hand side and left-
hand side of Eqs. (16)–(20), respectively. The eigenvalue
x, with maximum imaginary part, determines the stability
characteristics of the steady solution and the corresponding
eigenvector represents the flow and temperature fields of
the disturbance. The eigenvalue problem is solved numeri-
cally by a QR method. Stability analyses based on the
spectral element method and constituting the eigenvalue
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problem have been carried out by Adachi and Uehara [13]
for flow in a complex geometry.

All the numerical calculations are done with double pre-
cisions and the values of the truncation parameters in Eqs.
(23) and (24) are taken as N = 8. The results are confirmed
to be valid up to four significant digits by changing the
parameters.

4. Results

4.1. Nonlinear steady-state solutions

We adopt a velocity v0 in the y-direction at (y,z) =
(0,1/4) as a physical quantity which characterizes the non-
linear steady solution. The velocity v0 is plotted against Ra

in Fig. 2 for both h = 0� and 0.01�. There are three solu-
tions for h = 0� in Fig. 2(a), which are represented by
OA, PB and PC. The line OA indicates the motionless state
due to v0 = 0 which means that there is no natural convec-
tion. As a result of a pitchfork bifurcation, the L-roll
convections PB and PC appear at the critical point P of
RaP = 5011.7 [9,7]. Namely, under the assumption of the
two-dimensionality, there is no natural convection for
Ra < RaP and the motionless state becomes unstable for
Ra > RaP. The stable convection branches PB and PC
appear for Ra > RaP. The direction of the convective
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Fig. 2. Bifurcation diagram v0 against Ra. (a) OA, PB and PC for h = 0�,
(b) OD, SE and SF for h = 0.01�.
motion for PB and PC is opposite each other and cannot
be predicted in a deterministic manner but is selected by
chance. On the other hand, there are three L-roll convec-
tive solutions for the case of h = 0.01� in Fig. 2(b). One
is a smooth transition branch OD which extends from
Ra = 0, therefore there is no motionless state in this case.
The others are saddle-node branches SE and SF which join
at a saddle-node point S of RaS = 5042.0. It is recognized
that the branch SE is a metamorphose of PA for h = 0�
and is always unstable. We can see from the figure that
the bifurcation is the imperfect pitchfork one for
h = 0.01�. The direction of the convective motion is the
same with that of the inclination of the duct for the solu-
tion of OD, and is opposite to one of SE and SF.

The flow and temperature fields of the steady-state solu-
tions for Ra = 6000 and h = 0� and 0.01� are shown in
Fig. 3 as an example, which corresponds to the points
denoted by Q and R in Fig. 2. There is one big circulation
in the center of the flow field for Ra = 6000 in Fig. 3(a).
The direction of circulation is counter-clockwise because
the value of v0 at Q and R is positive, so the flow fields seem
to be skewed to the counter-clockwise direction. The corre-
sponding temperature field is depicted in Fig. 3(b). The
right-hand side has a local maximum temperature and
the other a local minimum temperature because the global
circulation is in the counter-clockwise direction. The flow
and temperature fields for Ra = 6000 and h = 0.01� are
also skewed to the direction of the circulation as depicted
in Fig. 3(c) and (d).
(a) (b)

(c) (d)

Fig. 3. Flow and temperature fields for Ra = 6000. (a) and (c) Stream-
lines, (b) and (d) Contour-lines for temperature. (a) and (b) for h = 0�, (c)
and (d) for h = 0.01�.
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4.2. Linear stability

All the steady nonlinear solutions obtained previously
are not stable. We investigate the three-dimensional linear
stability of the steady L-roll solutions including the
motionless state which is indicated by OA, PB, OD and
SF in Fig. 2. It should be noted that the stability character-
istics of PC for h = 0� are the same as one of PB, while SE
for h = 0.01� is a metamorphose of PA for h = 0� and is
always unstable. Therefore, we do not examine the stability
of the steady solutions of PC and SE. We will show the lin-
ear neutral stability curves against the wave number a. The
maximum linear growth rate xi changes from a negative
value to a positive one across the neutral curve. When
the neutral curve has a local minimum, we define the point
as the critical Rayleigh number Rac and the critical wave
number ac.

Fig. 4(a) shows the neutral curve obtained from stability
analyses for the motionless state of h = 0� which corre-
sponds to the branch OA in Fig. 2. It seems that the insta-
bility modes which work to destabilize the motionless state
exchange themselves near the point of a = 1.25. It is evi-
dent that the instability mode for a < 1.25 is arisen from
one of a = 0. This means that the mode inherits the charac-
teristics of L-roll. On the other hand, the mode for a > 1.25
has characteristics of the T-rolls, which should be con-
firmed in the later section from the flow and temperature
fields. The critical Rayleigh number of OA for the three-
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Fig. 4. The linear neutral stability curves for h = 0�. (a) The curve for the
motionless state OA. (b) The curve for the L-roll branch PB.
dimensional disturbance is being evaluated as Rac =
2936.4 at ac = 3.14, which is less than the critical value of
RaP = 5011.7 for the two-dimensional disturbance (a = 0).
The frequency of the disturbance xr is zero, therefore the
principle of exchange of stabilities are valid [14], and the
bifurcated solution is a steady convection. In addition,
we investigate the linear stability of the steady L-roll solu-
tion PB and show the neutral curve in Fig. 4(b) against the
wave number. It is seen that the neutral curve is constant as
Ra = RaP = 5011.7 for a > 1.45. This implies that the
growth rate is always positive value for a > 1.45 and
Ra > RaP, and the L-roll solution for h = 0� is unstable
for the three-dimensional disturbances.

Next, we show the neutral curve against the wave num-
ber for OD of h = 0.01� in Fig. 5(a). As is evident from this
figure, the neutral curve changes at a � 1.25, but the insta-
bility modes does not exchange in this case as shown in the
later section. The critical Rayleigh number for OD is being
evaluated as Rac = 2941.6 at ac = 3.38. The frequency of
the disturbance is zero also in this case. The neutral curve
for the steady L-roll solution SF against the wave number
is shown in Fig. 5(b). Again, the neutral curve is constant
as Ra = RaS = 5042.0 for a > 1.44, which means that the
solution SF is unstable. As we have shown, the L-roll for
h = 0.01� is stable for Ra < 2941.6, while the L-roll is
always unstable for h = 0�. Therefore, we can conclude that
the structure of the flow fields are quite different depending
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Fig. 5. The linear neutral stability curves for h = 0.01�. (a) The curve for
the smooth transition branch OD. (b) The curve for the saddle-node
branch SE.
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on the angle of inclination, even if the angle is small such as
0.01�.

It is evident that the perfect pitchfork bifurcation occurs
from the motionless state OA for h = 0� at Rac = 2936.4
and ac = 3.14, where OA loses its stability for the three-
dimensional disturbances. After that, the two branches of
T-rolls whose circulation is in opposite direction each other
bifurcate from the critical point, although we are regret-
fully unable to calculate the three-dimensional roll solu-
tions in this study. The structure of the bifurcation
h = 0.01� seems to be invariant for the three-dimensional
disturbance and also the perfect pitchfork one. Namely,
the smooth transition L-roll branch OD loses its stability
at Ra = 2941.6 and a = 3.38 for the three-dimensional dis-
turbance, and the two new branches stem from the point. It
is expected that the resultant flow and temperature fields
from the critical points are super-posed fields between
L-roll and T-rolls. The robustness of the bifurcation struc-
ture is quite different from the case of steady solutions of
the L-roll as seen earlier in Section 4.1.

4.3. Flow and temperature fields of disturbances

Flow and temperature fields of the disturbance on the
neutral curve are obtained from the eigenvector for the
eigenvalue problem. We show the flow and temperature
fields for h = 0� in Fig. 6. The range of the x-direction in
x

y

z

(a) (b)

(c) (d)

Fig. 6. Flow and temperature field for h = 0�, where the phase is arbitrary.
(a) and (c) Flow fields. (b) and (d) Temperature fields. (a) and (b) Fields at
Ra = 5080.2 and a = 1.0. (c) and (d) Fields at the critical point.
the figure is 0 < x < 3k, where k = 2p/a is a wave length
in the x-direction of the disturbance. Streak-lines on the
neutral curve at a = 1.0 and Ra = 5080.2 as seen in
Fig. 6(a) appears a roll type convection with the axis paral-
lel to the axis of the duct, which is somewhat modified
along the axis due to a 5 0. It is confirmed that the dis-
turbance for a < 1.25 inherits the characteristics of
two-dimensional L-roll solution as mentioned previously.
The corresponding temperature field by the contour-lines
is depicted in Fig. 6(b), where the axis of the contour-lines
seems to be along the axis of the duct. Fig. 6(c) and (d)
show the streak-lines and contour-lines of the temperature
at the criticality for the motionless state. In this case, the
axes of the rolls are perpendicular to the axis of the duct.
Therefore, the resultant fields from the bifurcation due
to the three-dimensional disturbances are the T-roll
convection.

Streak-lines and contour-lines of the temperature for
h = 0.01� on the neutral curve at a = 0.1 and Ra = 37037
as seen in Fig. 7(a) and (b) also appear a roll type convec-
tion. Therefore, it is confirmed that the disturbance for
a < 1.25 inherits the characteristics of two-dimensional
L-roll solution. The streak-lines and contour-lines of the
temperature for h = 0.01� at the criticality are depicted in
Fig. 7(c) and (d), where a = 3.38 and Ra = 2941.6. As the
x
y

z

(a) (b)

(c) (d)

Fig. 7. Flow and temperature field for h = 0.01�, where the phase is
arbitrary. (a) and (c) Flow fields. (b) and (d) Temperature fields. (a) and
(b) Fields at A at Ra = 37037 and a = 0.1. (c) and (d) Fields at the critical
point.
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axes of the rolls are perpendicular to the axis of the duct,
the fields of the disturbances are T-roll convection. It is
expected that the resultant flow and temperature fields
from the critical points are super-posed fields between
L-roll and T-rolls.

We can explain the reason why the instability modes
abruptly change around a � 1.25 as follows. The axis of
convection is modulated for the case of a 5 0, and the
vorticity turns to the different direction along the modula-
tion as seen in Fig. 8(a). It has been shown that axes
approach each other with aligning their vorticity anti-par-
allel from a localized induction approximation theory
[15,16]. When a is small, the induction velocity between
the axes is also small. So the axes balance each other
and keep the inherent two-dimensionality from a = 0.
However, when a is larger and the corresponding wave
length is shorter, the induction velocity becomes larger.
Once the wave length is shorter than a certain critical
length, the axes come to arrange anti-parallel at a stroke
as seen in Fig. 8(b). It is thought that the limit of wave
number is a � 1.25 and the neutral curves abruptly change
around the point.

The axes of the T-rolls is almost parallel to the horizon-
tal if the angle of inclination is small. As the angle
increases, however, the direction of the axes tends to the
vertical, which leads to unrealistic flow and temperature
fields. This implies that the super-posed flow can be real-
ized within the limits of small angels of inclination. It is
comparable with the result of Ozoe et al. [10] who showed
that there was a transient flow regime for angle between 0�
and 10�.
2

(a)

(b)

Fig. 8. Schematic figure to explain the exchange of instability modes. (a)
Two-dimensional mode with axial modulations and (b) Three-dimensional
mode with anti-parallel axes.
5. Concluding remarks

We have calculated the two-dimensional nonlinear
steady solutions in an inclined square duct and have per-
formed the three-dimensional stability analyses for the
steady solutions based on the linear stability theory. It is
widely recognized that the assumption of two-dimensional
flow fields is not appropriate as a model of convection in
the duct which is placed horizontally and is heated from
the bottom. However, the situation have been quite differ-
ent when the duct is placed at an angle from the horizontal
plane even if the angle is only 0.01�. We summarize the
main conclusions as follows and show the schematic figure
of the obtained results in Fig. 9.

1. Three-dimensional T-rolls whose axes are normal to the
axis of the duct occur from the motionless state when
the Rayleigh number exceed a critical value Rac =
2936.4 and ac = 3.14 which is indicated by A in Fig. 9,
where the duct is placed horizontally (h = 0�). However,
it is found that only 0.01� inclination leads to the two-
dimensional L-roll flow from the T-roll flow field for
h = 0� and the L-roll is stable up to the critical Rayleigh
number. We have evaluated the critical Rayleigh num-
ber and the critical wave number Rac = 2941.6 and
ac = 3.38 where the L-roll becomes unstable for the
three-dimensional disturbance which is indicated by B
in Fig. 9.

2. It is well known that the pitchfork bifurcation is struc-
turally unstable to some perturbations in the system.
Even a small angle of inclination as h = 0.01� affects
the bifurcation structure for the L-roll solutions under
the assumption of two-dimensionality, and the perfect
pitchfork bifurcation becomes imperfect one. On the
other hand, it is now apparent that the pitchfork bifur-
cation for three-dimensional disturbances is structurally
stable for the angle of inclination.

3. The resultant flow field from the motionless state for the
three-dimensional disturbances in the case of h = 0� is
Ra

Stable Conductive State

Stable L-roll

Unstable L-roll

 Threshold of T-roll

Threshold of L-roll and T-roll

A

B

v
0

Fig. 9. Schematic figure of the obtained results. Stable and unstable
solutions are indicated by the solid and dashed lines, respectively.



2380 T. Adachi / International Journal of Heat and Mass Transfer 49 (2006) 2372–2380
the T-roll convection which occur the critical point A in
Fig. 9. On the other hand, the resultant flow field from
the critical point B seen in Fig. 9 for the case of
h = 0.01� is the super-posed flow between L-roll and
T-rolls.
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